T3 Continuidad de Funciones

Encuentre los valores de las constantes $c$ y $k$ que hacen que la función sea continua en todo punto

$f(x) = \left\{ \begin{array}{ll} 3x+7 & \mathrm{si\ } x \leq 4\\ kx-1 & \mathrm{si\ } x > 4 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} kx-1 & \mathrm{si\ } x \leq 2 \\ kx^2 & \mathrm{si\ } x > 2 \end{array} \right. $
$f(x) = \left\{ \begin{array}{ll} \:\:\:\:x & \mathrm{si\ } x \leq 1 \\ cx+k & \mathrm{si\ } 1 < x < 4\\ -2x & \mathrm{si\ } x \geq 4 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} x+2c & \mathrm{si\ } x < -2 \\ 3cx+k & \mathrm{si\ } -2 \leq x \leq 1 \\ 3x-2k & \mathrm{si\ } x > 1 \end{array} \right. $
$f(x) = \left\{ \begin{array}{ll} 2x+1 & \mathrm{si\ } x\leq 1 \\ \:\:\:k & \mathrm{si\ } x > 1 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} x^2+kx & \mathrm{si\ } x\leq 2 \\ k-x^2 & \mathrm{si\ } x > 2 \end{array} \right. $
$g(x) = \left\{ \begin{array}{ll} x+1 & \mathrm{si\ } x\leq 2 \\ 3-kx^2 & \mathrm{si\ } x > 2 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} e^{kx} & \mathrm{si\ } x\leq 0 \\ x+2k & \mathrm{si\ } x > 0 \end{array} \right. $
$f(x) = \left\{ \begin{array}{ll} x^2+2x+1 & \mathrm{si\ } x < 0 \\ \:\:kx+c & \mathrm{si\ } 0 \leq x < 1\\ \:\:\:\:\:2 & \mathrm{si\ } x \geq 1 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} 3x+6c & \mathrm{si\ } x < -3 \\ 3cx-7k & \mathrm{si\ } -3 \leq x \leq 3\\ x-12k & \mathrm{si\ } x > 3 \end{array} \right. $
$f(x) = \left\{ \begin{array}{ll} x^2 & \mathrm{si\ } x \leq -2 \\ cx+k & \mathrm{si\ } -2 < x < 2\\ 2x-5 & \mathrm{si\ } x \geq 2 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} 2x+1 & \mathrm{si\ } x \leq 3 \\ cx+k & \mathrm{si\ } 3 < x < 5\\ x^2+2 & \mathrm{si\ } x \geq 5 \end{array} \right. $
$f(x) = \left\{ \begin{array}{ll} 3x+6c & \mathrm{si\ } x \leq -3 \\ 3cx-7k & \mathrm{si\ } -3 < x < 3\\ x-12k & \mathrm{si\ } x \geq 3 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} \frac{x^4-1}{x-1} & \mathrm{si\ } x \neq 1 \\ \:\:\:k & \mathrm{si\ } x = 1 \end{array} \right. $
$f(x) = \left\{ \begin{array}{ll} \frac{1}{x^2}+k & \mathrm{si\ } x \leq -1 \\ 3x^2+4 & \mathrm{si\ } -1 < x < 1\\ -x^3+8 & \mathrm{si\ } x \geq 1 \end{array} \right. $ $f(x) = \left\{ \begin{array}{ll} x^2+2x+1 & \mathrm{si\ } x < 0 \\ \:\:kx+c & \mathrm{si\ } 0 \leq x < 1\\ \:\:\:\:\:2 & \mathrm{si\ } x \geq 1 \end{array} \right. $

 

Etiqueta: 

 

 

 

 

 

Institución Universitaria
Colegio Mayor de Antioquia
Quédate en Colmayor

Aula A188, Bloque Patrimonial
Teléfono: + 57 (4) 444 56 11, ext: 213
Correo Coordinadora: Ivon Jaramillo
Dirección: Carrera 78 # 65 - 46
Medellín - Antioquia - Colombia